

IngentaCal

Engineering Solutions

SCIFESOL Tutorial: Modal Analysis of Beam

Problem Description

Modal analysis of a cantilever beam having uniform cross section is performed to calculate the mode shapes and natural frequencies of the beam.

Geometry

A cantilever beam of length 1m, having rectangular cross section is studied.

Mesh Generation

We model the beam using 2D plane stress quadrilateral element and 8 node hexahedral element.

2D Plane Stress Model

Import Mesh

Now import the mesh file saved in file 2DPlaneBeam.m which is exported from GMSH.

Define Analysis Settings

- Select analysis type to Modal.
- Using analysis settings, specify mode extraction method.

Define Material Properties

Select material of torque arm from material editor. We can add new material if other material

is required.

Define Element Properties

We define the behavior of 2D 4 node quadrilateral elements as plane stress.

Define Element Properties

- Now we define the formulation of quadrilateral elements as Enhanced Strain method.
- Select the stiffness matrix integration rule as 2x2.
- Select the mass matrix integration rule as 3x3.
- Specify the thickness as 20 mm.

Apply Boundary Conditions

The beam is fixed at its left end using boundary ID 4.

Solve

Start Modal solver to solve the model.

Results

Using the post processor tab, we plot the required Mode shapes.

3D Model

Using the same procedure we solve for 3D model of the beam using Hexahedral elements .

Results

In 3D analysis, the order of mode shapes change as degree of freedom of the model increases.

Lateral Bending Mode

Vertical Bending Mode

Thanks!

